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1 Probability Background

We work on a probability space (Ω,F ,P). Fix a pair of separable metric spaces
X ,Z equipped with their Borel σ-algebras Σ1,Σ2 respectively. (In the case that
Z is finite, we equip it with the discrete metric, so that Σ2 is the power set 2Z .)
We consider a pair of random variables X : Ω → X and Z : Ω → Z.

Let ρ denote the joint distribution of (X,Z) on X × Z, i.e. ρ is the push-
forward of P by the map ω 7→ (X,Z)(ω). Let µ denote the law of X, defined
by µ(A) = ρ(A× Z) for each A ∈ Σ1. Similarly, let ν denote the law of Z. By
the disintegration theorem [1, Section 4.4], there exists a stochastic kernel κZ|X
such that for all (A,B) ∈ Σ1 × Σ2, we have

ρ(A×B) =

∫
A

κZ|X(x,B)µ(dx).

Similarly, there exists a stochastic kernel κX|Z such that for all (A,B) ∈ Σ1×Σ2,
we have

ρ(A×B) =

∫
B

κX|Z(z,A)ν(dz).

Intuitively, the maps κZ|X and κX|Z represent the conditional distribution of Z
given X and the conditional distribution of X given Z, respectively.

Throughout this work, we will often identify distributions with their den-
sities. Let fX : X → [0,+∞) be the density of µ with respect to a reference
measure λ on X , i.e. the Radon-Nikodym derivative dµ

dλ . The existence of this
density is ensured by the Radon-Nikodym Theorem [1, Section 4.1].1 Similarly,
let fZ : Z → [0,+∞) be the density of ν with respect to a reference measure on
Z. For each z ∈ Z, we let fX|Z(·|z) : X → [0,+∞) denote the density of the
conditional measure κX|Z(z, ·). For each x ∈ X , we let fZ|X(·|x) : Z → [0,+∞)
denote the density of the conditional measure κZ|X(x, ·).

Given a pair of probability measures ξ, η on a measurable space (M,Σ),
the Kullback-Leibler (KL) divergence of ξ from η is defined as DKL(ξ||η) =
Ez∼ξ[log

dξ
dη (z)] when ξ ≪ η and +∞ otherwise. Given the Lebesgue measure

1Here λ is an appropriate dominating reference measure on X with µ ≪ λ. If X is a
continuous random variable taking values in Rd, then λ is the standard Lebesgue measure on
Rd. If X is discrete random variable, then λ is the counting measure on X .
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λ on (Rd,B(Rd)), if ξ is a probability measure on (Rd,B(Rd)), then if ξ ≪ λ
with dξ

dλ log dξ
dλ ∈ L1(Rd,B(Rd), λ), the differential entropy of ξ is defined as

h(ξ) = −Ez∼ξ[log
dξ
dλ (z)], and the differential entropy is +∞ otherwise.2

In what follows, X can be interpreted as the data space and Z can be
interpreted as the latent space. When we assume that a latent space exists,
we are making a generative assumption. As we will see, the latent space can
differ depending on the problem setting, but some common examples include
categorical labels and embeddings in Euclidean space. To the reader unfamiliar
with measure-theoretic probability, one can interpret the notions of distributions
and densities in the classical sense for what follows.

2 Maximum Likelihood Derivation

We are given a set of i.i.d samples from the data distribution µ. We denote these
datapoints {xi}ni=1, where xi ∈ X ⊆ Rd. We attempt to learn µ via maximum
likelihood. In line with our earlier discussion, we make the following generative
assumption on the data: for each i ∈ [n],

1. Sample zi from ν (equivalently, fZ). This is known as the prior distribu-
tion.

2. Sample xi from κX|Z(zi, ·) (equivalently, fX|Z(·|zi)). This is known as the
sampling distribution.

3. Reveal xi and hide zi.

The conditional distribution fZ|X(·|x) will be relevant in what follows, and this
is known as the posterior distribution over the latent space.

Throughout, we assume the prior fZ is known. One way to learn the
marginal distribution of X is to postulate a parametric family (fθ

X|Z(·|z))θ∈Θ

of densities for each z ∈ Z. This induces a parametric family (fθ
X(·))θ∈Θ of

marginal distributions on X, where we define

fθ
X(x) :=

∫
Z
fθ
X|Z(x|z)fZ(z)dz.

We learn the marginal distribution of X by solving for the maximum likelihood
estimator θ̂ML. Since our samples xi are independent, the maximum likelihood
estimator is given by

θ̂ML = argmax
θ

ℓ(θ) = argmax
θ

n∑
i=1

log fθ
X(xi). (1)

2Notice that the differential entropy of a random variable is exactly its negative KL diver-
gence to the Lebesgue measure on the same measurable space, despite the latter not necessarily
being a probability measure.
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Using our generative assumption and the law of total probability, Equation 1
can be written as

θ̂ML = argmax
θ

ℓ(θ) = argmax
θ

n∑
i=1

log

(∫
Z
fθ
X|Z(xi|z)fZ(z)dz

)
.

Unfortunately, the objective function requires the computation of a potentially
high-dimensional integral, and in certain settings this is a non-convex optimiza-
tion problem. As such, we manipulate the objective to obtain a more tractable
optimization problem. For simplicity, we work with a single sample x below,
and we extend the derivation to our full dataset at the end.

We seek a proxy for the log likelihood log fθ
X(x). We derive a lower bound

using the following trick. We introduce a parametrized family of posteriors
(fϕ

Z|X(·|x))ϕ∈Φ, and we manipulate the KL divergenceDKL(f
ϕ
Z|X(·|x)||fθ

Z|X(·|x))
until log fθ

X(x) appears.
We rewrite this KL divergence as follows. By Bayes’ rule, fθ

Z|X(z|x) =
fθ
X|Z(x|z)fZ(z)

fθ
X(x)

, so that

fϕ
Z|X(z|x)
fθ
Z|X(z|x)

=
fϕ
Z|X(z|x)
fZ(z)

· fθ
X(x)

fθ
X|Z(x|z)

.

We manipulate the equation to make the prior fZ appear. This technique leads
to a prior matching term. The KL objective becomes

Ez∼fϕ
Z|X(·|x)

[
log

fϕ
Z|X(z|x)
fθ
Z|X(z|x)

]

= Ez∼fϕ
Z|X(·|x)

[
log

fϕ
Z|X(z|x)
fZ(z)

+ log fθ
X(x)− log fθ

X|Z(x|z)

]
= (DKL(f

ϕ
Z|X(·|x)||fZ(·))− Ez∼fϕ

Z|X(·|x)[log f
θ
X|Z(x|z)]) + log fθ

X(x).

Notice that the log likelihood appears in this manipulation. Isolating this log
likelihood, we obtain

log fθ
X(x) = DKL(f

ϕ
Z|X(·|x)||fθ

Z|X(·|x))

+ (Ez∼fϕ
Z|X(·|x)[log f

θ
X|Z(x|z)]−DKL(f

ϕ
Z|X(·|x)||fZ(·))).

The quantity in parentheses is called the Evidence Lower Bound (ELBO):

ELBO := (Ez∼fϕ
Z|X(·|x)[log f

θ
X|Z(x|z)]−DKL(f

ϕ
Z|X(·|x)||fZ(·))).

Indeed, since the KL divergence appearing in the preceding equation is non-
negative, the ELBO is a lower bound for the “evidence” log fθ

X(x).3 The ELBO

3The non-negativity of the KL Divergence follows from Jensen’s Inequality.
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will serve as our desired proxy. Instead of maximizing the log likelihood, we
maximize the ELBO over (θ, ϕ):

argmax
θ,ϕ

Ez∼fϕ
Z|X(·|x)[log f

θ
X|Z(x|z)]−DKL(f

ϕ
Z|X(·|x)||fZ(·)) (2)

The first term is called the reconstruction term. This term forces the likelihood
of a latent variable z sampled from the posterior to be large. The second term
is the prior matching term. This term forces our learned posterior to be close
to the prior. The prior matching term is also known as entropy regularization.

Note that in general, if we know the prior fZ(·) and the sampling distribution
fX|Z(·|z), then this completely specifies the joint distribution fX,Z(x, z) via the
formula fX,Z(x, z) = fX|Z(x|z)fZ(z). In particular, this completely specifies the

posterior fZ|X(·|x). Thus, if we learn fθ
X|Z(·|z), we induce a posterior fθ

Z|X(·|x)
via the formula

fθ
Z|X(z|x) =

fθ
X|Z(x|z)fZ(z)∫

Z fθ
X|Z(x|z)fZ(z)dz

.

However, computing the denominator involves a complicated integral. Therefore
it’s simpler to separately parametrize the sampling and posterior distributions
by θ and ϕ respectively when optimizing the ELBO.

Returning to the setting of n samples, we sum the ELBO for each xi to
obtain the objective

(θ∗, ϕ∗) = argmax
θ,ϕ

n∑
i=1

(Ez∼fϕ
Z|X(·|xi)

[log fθ
X|Z(xi|z)]−DKL(f

ϕ
Z|X(·|xi)||fZ(·))).

Notice that θ∗ ̸= θ̂ML. However, since we optimized a lower bound on the
original problem 1, the hope is that the two quantities are close. Indeed, if ϕ∗

is such that fϕ∗

Z|X(·|x) agrees with the posterior fθ∗

Z|X(·|x), then the log likeli-

hood coincides with the ELBO. In this case, fθ∗

X coincides with our maximum
likelihood estimator of the data distribution.

As a sidenote, the ELBO is related to the field of variational inference (VI).
In VI, the goal is to approximate the true posterior fZ|X(·|x) using a paramet-

ric family (fϕ
Z|X(·|x))ϕ∈Φ of densities for each x ∈ X . In VI, the optimal ϕ

is computed by minimizing the KL divergence, which is a type of variational
problem.

3 Gibbs Variational Principle Derivation

Theorem 1 (Gibbs Variational Principle, Lemma 4.10 in [7]). Given any mea-
sure η on a measurable space (Z,B(Z)) and a measurable function g : Rm → R,
we have

logEη[e
g] = sup

ξ∈P(Z)

{Eξ[g]−DKL(ξ||η)} .
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The ELBO looks very much like the right-hand side of the Gibbs variational
principle.4 To make the connection precise, we let η be the prior fZ and we let
g(z) = log fθ

X|Z(x|z). Then Theorem 1 implies

logEz∼fZ(·)[f
θ
X|Z(x|z)] = sup

ξ∈P(Z)

{
Ez∼ξ[log f

θ
X|Z(x|z)]−DKL(ξ||fZ(·))

}
.

The left-hand side can be expanded as∫
Z
fθ
X|Z(x|z)fZ(z)dz = fθ

X(x).

Next, note that

RHS ≥ max
ϕ

Ez∼fϕ
Z|X(·|x)[log f

θ
X|Z(x|z)]−DKL(f

ϕ
Z|X(·|x)||fZ(·)).

Plugging in, we find
log fθ

X(x) ≥ ELBO,

which is exactly the statement that the ELBO is a lower bound on the log
likelihood for any pair (θ, ϕ). We have equality in the case that the parametric

family fϕ
Z|X(·|x) consists of all probability distributions on Z.

4 How to use learned sampling and posterior?

Suppose we optimize the ELBO to obtain (θ∗, ϕ∗). Denote our learned posterior

distribution by fϕ∗

Z|X(·|x) and sampling distribution by fθ∗

X|Z(·|z). A typical use

of a learned VAE is the generation of new samples from X . We refer to this as
the generation task.

4.1 Reconstruction

For this task we are given some input data x ∈ X . We encode it to get the

corresponding latent representation by modelling the distribution fϕ∗

Z|X(·|x) over
Z space as N(µϕ∗(x),diag(σ2

ϕ∗(x)) where the mean and covariance functions are

typically Feedforward Neural Networks µϕ∗ : X → Rm and σ2
ϕ∗ : X → Rm

+ .

Sampling from N(µϕ∗(x),diag(σ2
ϕ∗(x)) yields the relevant latent z. From

here one can decode it by sampling x̃ from fθ∗

X|Z(·|z), which is a distribution

over X space. Once again this is modelled as N(µθ∗(z),diag(σ2
θ∗(z)) where

the mean and covariance functions are typically Feedforward Neural Networks
µθ∗ : Z → Rd and σ2

ϕ∗ : Z → Rd
+. Overall, the forward pass yields x̃ as the

reconstruction of x.
4It is known that the maximizer is the measure ξ∗ given by

ξ∗(dz) =
egη(dz)

Eη [eg ]
,

which is a “tilted” version of η that places extra weight where g is large.
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4.2 Generation

Given a learned VAE, there are two steps to generate a new sample. First,
sample a latent z from the prior distribution fZ(·) on the space Z. Then,
decode this latent z by sampling x from the learned sampling distribution
fθ∗

X|Z(·|z) on the space X . This sampling distribution is modeled as the Gaussian

N(µθ∗(z),diag(σ2
θ∗(z))), where the mean and covariance functions are typically

Feed-Forward Neural Networks µθ∗ : Z → Rd and σ2
ϕ∗ : Z → Rd

+.

4.3 The use of Gaussians

It might seem surprising that we model the posterior and sampling distributions
as Gaussians. To see why this works, consider the generation task in the special
case that σ2

θ∗ = 0. In this setting, we first sample z from the prior, a standard
Gaussian, and then we apply the deterministic map µθ∗ to obtain the sample
x = µθ∗(z). The distribution of x is the pushforward of the standard Gaussian
by the map µθ∗ . Since µθ∗ is modeled as a neural network, it can be a very
complicated function. Thus the distribution of the sample x can also be very
complex.

5 A Simple Setting: Image Generation

We are given a set of images {xi}ni=1 ⊆ X , where X ⊆ Rd. This could be a set
of images of animals, digits, etc. We wish to generate new images which did not
exist in our dataset and ensure that they still look accurate. Suppose X ⊆ Rd

is the space of all animal images. In the categorical setting, the latent space
Z is a finite set [m], and each category represents a different type of animal.
Alternatively, we could simply consider Z ⊆ Rm. In our dataset, we do not have
access to the latent variable zi corresponding to each xi. In real-world datasets,
X concentrates around a low dimensional subspace of the ambient Rd.

At this point one can postulate the same data generation algorithm and op-
timization problem as in Section 2. Solving that problem would yield a learned
sampling distribution that could be used to generate new images of animals in a
given latent z. However, we must select an appropriate prior distribution. Two
options are:

1. Using the uniform distribution over [m].

2. Considering the standard Gaussian measure on Rm.

Even if our latent space is discrete in this case, the computations above work
so long as the posterior has the same discrete support as the prior..

Alternatively, this task can be approached using the Vector Quantized-VAE
(VQ-VAE) introduced in [6]. Given a specified number of categories m, the
VQ-VAE discretizes a continuous latent space Z by learning a codebook of m
vectors (ej)j∈[m] in Z. Unlike a typical VAE, the encoder is a deterministic
map parametrized by ϕ whose output is rounded to the nearest vector in the
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codebook. Thus the posterior is a distribution supported on a single vector ej .
As in a VAE, the sampling distribution is parametrized by θ. The VQ-VAE
learns the parameters θ and ϕ, as well as the codebook (ej)j∈[m]. The VQ-VAE
objective includes a reconstruction term, as well as additional quantization and
commitment terms that depend on the codebook.

6 Training

In this section, we discuss how to train a VAE, following [5]. As can be recalled
from Section 4, implementing a VAE requires a pair of Feed-Forward Neural
Nets. The first neural net is the encoder, which learns ϕ and thus the posterior
fϕ
Z|X(·|x). The second neural net is the decoder, which learns θ and thus the

sampling distribution fθ
X|Z(·|z). We compute the pair (θ∗, ϕ∗) that maximizes

the ELBO using gradient descent.
Suppose we want to perform a single step of gradient descent on the ELBO.

First, we replace the expectation Ez∼fϕ
Z|X(·|x) with an empirical average. For

each i ∈ [n], sample {z(ℓ)i }ℓ∈[L] i.i.d. from the posterior fϕ
Z|X(·|xi). The empiri-

cal objective is given by

argmax
θ,ϕ

n∑
i=1

1

L

L∑
ℓ=1

log fθ
X|Z(xi|z(ℓ)i )−

n∑
i=1

DKL(f
ϕ
Z|X(·|xi)||fZ(·))

(The law of large numbers implies that the empirical objective converges al-
most surely to the population objective as L → ∞.) Suppose we compute

the gradient with respect to ϕ. If we treat the sampled z
(ℓ)
i ’s as constants,

then we fail to take into account the dependence of the first sum on ϕ, and

our gradient will be inaccurate. In order to make the dependence of the z
(ℓ)
i ’s

on ϕ explicit, we must reparametrize fϕ
Z|X(·|xi). Since fϕ

Z|X(·|x) is the Gaus-

sian N(µϕ(x),diag(σ
2
ϕ(x))), a sample from this distribution can be written as

z = µϕ(x) + σϕ(x) ⊙ ε, where ε ∼ N(0, I) and where ⊙ is the element-wise
product. Crucially, the distribution of ε has no dependence on ϕ. Thus if we

rewrite z
(ℓ)
i as z

(ℓ)
i = µϕ(xi) + σϕ(xi) ⊙ ε

(ℓ)
i where ε

(ℓ)
i are i.i.d. N(0, I), our

objective becomes

argmax
θ,ϕ

n∑
i=1

[
1

L

L∑
ℓ=1

log fθ
X|Z(xi|µϕ(xi) + σϕ(xi)⊙ ε

(ℓ)
i )−DKL(f

ϕ
Z|X(·|xi)||fZ(·))

]
.

Since the dependence on ϕ is made explicit, we can treat the ε
(ℓ)
i ’s as constant

and compute the gradient with respect to θ, ϕ.
When performing gradient descent, at each iteration t, given current param-

eter estimates (θt, ϕt), we sample a fresh set of noise variables {ε(ℓ)i;t }ℓ∈[L] for
each i ∈ [n], and we compute the gradient of the resulting objective.
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7 Relationship with Expectation-Maximization
Algorithm

The VAE is related to the Expectation-Maximization (EM) algorithm, which
can be used for model-based clustering of the dataset {xi}ni=1 where xi ∈ X ⊆
Rd. The EM algorithm is an unsupervised learning algorithm that uses the same
generative assumptions as above. As above, we derive EM through a variational
route. We start with a single sample x.

Suppose that we parametrize the prior and sampling distributions as fθ
Z and

fθ
X|Z for some parameter θ. Since the joint distribution is determined by the
prior and sampling distributions, this induces a parametrization of the joint
and the posterior distributions. In what follows, we write fθ

X,Z and fθ
Z|X as the

induced parametrizations.
Notice that the marginal log likelihood log fθ

X(x) is actually equal to the
ELBO objective from Equation 2, since we use the induced θ posterior.5 Specif-
ically,

log fθ
X(x) = DKL(f

θ
Z|X(·|x)||fθ

Z|X(·|x))

+ (Ez∼fθ
Z|X(·|x)[log f

θ
X|Z(x|z)]−DKL(f

θ
Z|X(·|x)||fθ

Z(·)))

= Ez∼fθ
Z|X(·|x)[log f

θ
X|Z(x|z)]−DKL(f

θ
Z|X(·|x)||fZ(θ·))

= Ez∼fθ
Z|X(·|x)

[
log

(
fθ
X|Z(x|z)f

θ
Z(z)

fθ
Z|X(z|x)

)]
.

Rewriting the expectation as an integral, and applying Bayes’ rule we find

=

∫
Z
log

(
fθ
X|Z(x|z)f

θ
Z(z)

fθ
Z|X(z|x)

)
fθ
Z|X(z|x)dz =

∫
Z
log

(
fθ
X,Z(x, z)

fθ
Z|X(z|x)

)
fθ
Z|X(z|x)dz.

Splitting the log once more, the right-hand side becomes

= Ez∼fθ
Z|X(·|x)[log f

θ
X,Z(x, z)] + h(fθ

Z|X(·|x)).

The first term is an expected full-data log likelihood, and the second term is
the differential entropy of the posterior. Since the differential entropy is non-
negative, it’s natural to instead optimize the lower bound

argmax
θ,ϕ

Ez∼fθ
Z|X(·|x)[log f

θ
X,Z(x, z)],

This is known as the EM objective function derived via the variational method.
Returning to the full sample, we find the objective

argmax
θ,ϕ

n∑
i=1

Ez∼fθ
Z|X(·|xi)[log f

θ
X,Z(xi, z)]. (3)

5This follows since the KL divergence DKL(ξ, η) ≥ 0 and is 0 if and only if ξ = η.
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The difficulty in solving this optimization problem is that for each term, both the
integrand and the distribution of z depend on θ. Instead of directly optimizing
the objective, the EM algorithm “decouples” the two occurrences of θ through
an iterative approach, alternating between two steps. It falls within the much
broader class of Majorization-Minimization (MM) algorithms. At iteration t, we
keep a current estimate θt of the parameter θ. In the first step, the Expectation
Step, we compute the expectation

ℓ(θ; θt) :=

n∑
i=1

E
z∼fθt

Z|X(z|xi)
[log fθ

X,Z(xi, z)].

This serves as our current approximation of the expected full-data log likelihood
objective. In the second step, the Maximization Step, we maximize this proxy
to obtain the new estimate θt+1 := argmaxθℓ(θ; θ

t). We repeat until the iterates
{θt} converge. In some cases, as shown later the function ℓ(θ; θt) has a closed
form.

7.1 Why does the EM algorithm work?

We must redo our ELBO derivation in order to justify the EM algorithm; we
follow [4]. We would like to relate the marginal log likelihood log fθ

X(x) to our

function ℓ(θ; θt), which is an expectation with respect to fθt

Z|X(·|x). Fix an
arbitrary z. Then

log fθ
X(x) = log

fθ
X,Z(x, z)

fθ
Z|X(z|x)

= log fθ
X,Z(x, z)− log fθ

Z|X(z|x).

Taking an expectation with respect to z ∼ fθt

Z|X(·|x), we obtain

log fθ
X(x) = ℓ(θ; θt)− E

z∼fθt

Z|X(·|x)[log f
θ
Z|X(·|x)].

If we evaluate this identity at θ = θt, we obtain

log fθt

X (x) = ℓ(θt; θt) + h(fθt

Z|X(·|x)).

Taking the difference between these two equations, we obtain

(log fθ
X(x)− log fθt

X (x)) =
(
ℓ(θ; θt)− ℓ(θt; θt)

)
+
(
−E

z∼fθt

Z|X(·|x)[log f
θ
Z|X(·|x)]− h(fθt

Z|X(·|x))
)
.

We claim that the second term on the right-hand side is non-negative, with
equality when θ = θt. Indeed, this follows from the non-negativity of the KL
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divergence6

−E
z∼fθt

Z|X(·|x)[log f
θ
Z|X(·|x)]− h(fθt

Z|X(·|x)) = E
z∼fθt

Z|X(·|x)

[
log

fθt

Z|X(·|x)
fθ
Z|X(·|x)

]
= DKL(f

θt

Z|X(·|x)||fθ
Z|X(·|x))

≥ 0.

In other words, we obtain

log fθ
X(x)− log fθt

X (x) ≥ ℓ(θ; θt)− ℓ(θt; θt).

Thus if the iteration at step t increases the function ℓ(·; θt), it also increases the
value of the marginal log likelihood by that same amount.

7.2 Example: Gaussian Mixture Model

We make the above explicit in the special case of a Gaussian Mixture Model
(GMM). Specifically, we assume that the label z is sampled from a categorical
distribution π = (π1, . . . , πm) on [m], where

∑m
j=1 πj = 1 and π ≥ 0. Next,

we sample the datapoint x from the sampling distribution fθ
X|Z(x|z), which

we model as the Gaussian N(µz,Σz).
7 In other words, we seek to learn the

parameter θ = {µj ,Σj , πj}j∈[m]. For each x ∈ X , the posterior has the following
explicit form:

κZ|X(x, {z}) =
πzf

θ
X|Z(x|z)∑m

j=1 πjfθ
X|Z(x|j)

=
πzφ(x;µz,Σz)∑m
j=1 πjφ(x;µj ,Σj)

= fθ
Z|X(z|x).

This makes it clear that the posterior and the joint distribution can indeed be
parametrized by θ. We initialize our parameters at step 0 randomly and denote
the vector as θ0. Our EM update at iteration t consists of two steps:

1. Expectation Step: We wish to compute the expectation as a function of θ
given our current best estimate of the parameters θt. We obtain

ℓ(θ; θt) =

n∑
i=1

E
z∼fθt

Z|X(z|xi)
[log fθ

X,Z(xi, z)]

=

n∑
i=1

m∑
j=1

log fθ
X,Z(xi, j)f

θt

Z|X(j|xi)

=

n∑
i=1

m∑
j=1

(log πj + logφ(xi;µj ,Σj)) ·
πt
jφ(xi;µ

t
j ,Σ

t
j)∑m

l=1 π
t
lφ(xi;µt

l ,Σ
t
l)
.

6There are multiple methods to prove this, in the information theoretic context one might
rely on using Gibbs Inequality which is (as expected) proven via a classical application of
Jensen’s Inequality.

7We denote the density of the Gaussian measure with mean µ and covariance Σ at x by
φ(x;µ,Σ).
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where we used Bayes’ rule and plugged in our earlier results in the last
line.

2. Maximization Step: We compute our next best estimate of the parameters
by optimizing the function ℓ(θ, θt) derived above:

θt+1 = argmax
θ={πj ,µj ,Σj}m

j=1

ℓ(θ; θt).

It is easy to verify by optimizing the relevant Lagrangian that θt+1 has
components

πt+1
j =

1

n

n∑
i=1

fθt

Z|X(j|xi),

µt+1
j =

∑n
i=1 f

θt

Z|X(j|xi)xi∑n
i=1 f

θt

Z|X(j|xi)
,

Σt+1
j =

∑n
i=1 f

θt

Z|X(j|xi)(xi − µt+1)(xi − µt+1)⊤∑n
i=1 f

θt

Z|X(j|xi)

for all j ∈ [m].

We repeat these iterations until the iterates {θt}t≥0 satisfy satisfy some
preimposed convergence condition. By our majorization guarantee, each itera-
tion increases the log likelihood.

If one wishes to label the dataset {xi}ni=1, one can simply consider the final
parameter vector θ∗ and for each i ∈ [n] set the label to be

zi = argmax
j∈[m]

fθ∗

Z|X(j|xi).

Furthermore, the K-Means Algorithm is a special case of this when all the
covariances are isotropic, i.e., Σj = σ2Id for some known parameter σ2 [2].

We have applied EM to the GMM, but it applies to other distributions as
well. In [8], it is shown that if the marginal log likelihood function ℓ(θ) =

log fθ
X(x) has a unique local maximum at θ̂ML, if θ̂ML is the only stationary

point, and if the gradient ∇θℓ(θ; θ̃) is continuous as a function of (θ, θ̃), then
EM converges to the maximum likelihood estimator.

8 Issues with VAEs

In this section, we discuss a few issues with VAEs and how to fix them, following
[9].

One issue is that at times, VAEs can learn “uninformative latent codes.”
In some situations, the learned posterior fϕ

Z|X(·|x) is very similar for different

values of x. According to [9], the KL regularizer as the source of the problem.

11



Since the KL term forces fϕ
Z|X(·|x) to be close to the prior fZ(·) for all x,

it is natural that the learned code doesn’t depend much on x. To alleviate
this, the InfoVAE of [10] uses the Maximum Mean Discrepancy regularizer from
[3]. Other issues include uninterpretable latent representations and variance
explosion; for more, see [9].
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